Weil–Châtelet divisible elements in Tate–Shafarevich groups II: On a question of Cassels

نویسندگان

  • MIRELA ÇIPERIANI
  • Brendan Creutz
چکیده

For an abelian variety A over a number field k we discuss the divisibility in H(k,A) of elements of the subgroup X(A/k). The results are most complete for elliptic curves over Q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Trivial Torsors That Are Not Weil-châtelet Divisible

For every prime p we give infinitely many examples of torsors under abelian varieties over Q that are locally trivial but not divisible by p in the Weil-Châtelet group. We also give an example of a locally trivial torsor under an elliptic curve over Q which is not divisible by 4 in the Weil-Châtelet group. This gives a negative answer to a question of Cassels.

متن کامل

Computing the Cassels Pairing on Kolyvagin Classes in the Shafarevich-Tate Group

Kolyvagin has shown how to study the Shafarevich-Tate group of elliptic curves over imaginary quadratic fields via Kolyvagin classes constructed from Heegner points. One way to produce explicit non-trivial elements of the Shafarevich-Tate group is by proving that a locally trivial Kolyvagin class is globally non-trivial, which is difficult in practice. We provide a method for testing whether an...

متن کامل

On the Computation of the Cassels Pairing for Certain Kolyvagin Classes in the Shafarevich-Tate Group

Kolyvagin has shown how to study the Shafarevich-Tate group of elliptic curves over imaginary quadratic fields via Kolyvagin classes constructed from Heegner points. One way to produce explicit non-trivial elements of the Shafarevich-Tate group is by proving that a locally trivial Kolyvagin class is globally non-trivial, which is difficult in practice. We provide a method for testing whether an...

متن کامل

On the Tate-shafarevich Groups of Certain Elliptic Curves

The Tate-Shafarevich groups of certain elliptic curves over Fq(t) are related, via étale cohomology, to the group of points of an elliptic curve with complex multiplication. The Cassels-Tate pairing is computed under this identification.

متن کامل

Visualizing elements of order three in the Shafarevich-Tate group

1. Introduction. If we wish to write the equations of curves of genus 1 that give elements of the Shafarevich-Tate group of an elliptic curve over a number field K, a choice of ways is open to us. For example, if the element in question is of order 3 the curve of genus 1 corresponding to it occurs as a smooth plane cubic curve over K. In a recent article [C-M] we raised the question of when one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012